Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
PLoS One ; 19(4): e0300811, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568891

RESUMO

Multi-locus genetic data for phylogeographic studies is generally limited in geographic and taxonomic scope as most studies only examine a few related species. The strong adoption of DNA barcoding has generated large datasets of mtDNA COI sequences. This work examines the butterfly fauna of Canada and United States based on 13,236 COI barcode records derived from 619 species. It compiles i) geographic maps depicting the spatial distribution of haplotypes, ii) haplotype networks (minimum spanning trees), and iii) standard indices of genetic diversity such as nucleotide diversity (π), haplotype richness (H), and a measure of spatial genetic structure (GST). High intraspecific genetic diversity and marked spatial structure were observed in the northwestern and southern North America, as well as in proximity to mountain chains. While species generally displayed concordance between genetic diversity and spatial structure, some revealed incongruence between these two metrics. Interestingly, most species falling in this category shared their barcode sequences with one at least other species. Aside from revealing large-scale phylogeographic patterns and shedding light on the processes underlying these patterns, this work also exposed cases of potential synonymy and hybridization.


Assuntos
Borboletas , Animais , Estados Unidos , Borboletas/genética , Filogeografia , DNA Mitocondrial/genética , DNA Mitocondrial/química , Mitocôndrias/genética , Haplótipos , Variação Genética , Código de Barras de DNA Taxonômico , Filogenia
2.
Zookeys ; 1166: 235-259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346769

RESUMO

Two new genera and one new species of the Braconinae tribe Adeshini are described and illustrated: Crenuladesha Ranjith & Quicke, gen. nov., type species Adeshanarendrani Ranjith, 2017, comb. nov. from India, and Protadesha Quicke & Butcher, gen. nov., type species Protadeshaintermedia Quicke & Butcher, sp. nov. from South Africa. The former lacks the mid-longitudinal propodeal carina characteristic of the tribe, and the latter displays less derived fore wing venation with two distinct abscissae of vein 2CU. A molecular phylogenetic analysis is included to confirm their correct placement. Since neither of the two new genera displays all of the characters given in the original diagnosis of the Adeshini a revised diagnosis is provided, as well as an illustrated key to the genera.

3.
PLoS One ; 18(6): e0286620, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37289794

RESUMO

The nuclear genomes of most animal species include NUMTs, segments of the mitogenome incorporated into their chromosomes. Although NUMT counts are known to vary greatly among species, there has been no comprehensive study of their frequency/attributes in the most diverse group of terrestrial organisms, insects. This study examines NUMTs derived from a 658 bp 5' segment of the cytochrome c oxidase I (COI) gene, the barcode region for the animal kingdom. This assessment is important because unrecognized NUMTs can elevate estimates of species richness obtained through DNA barcoding and derived approaches (eDNA, metabarcoding). This investigation detected nearly 10,000 COI NUMTs ≥ 100 bp in the genomes of 1,002 insect species (range = 0-443). Variation in nuclear genome size explained 56% of the mitogenome-wide variation in NUMT counts. Although insect orders with the largest genome sizes possessed the highest NUMT counts, there was considerable variation among their component lineages. Two thirds of COI NUMTs possessed an IPSC (indel and/or premature stop codon) allowing their recognition and exclusion from downstream analyses. The remainder can elevate species richness as they showed 10.1% mean divergence from their mitochondrial homologue. The extent of exposure to "ghost species" is strongly impacted by the target amplicon's length. NUMTs can raise apparent species richness by up to 22% when a 658 bp COI amplicon is examined versus a doubling of apparent richness when 150 bp amplicons are targeted. Given these impacts, metabarcoding and eDNA studies should target the longest possible amplicons while also avoiding use of 12S/16S rDNA as they triple NUMT exposure because IPSC screens cannot be employed.


Assuntos
DNA Mitocondrial , Genoma de Inseto , Animais , DNA Mitocondrial/genética , Mitocôndrias/genética , Insetos/genética , Medição de Risco , Núcleo Celular/genética , Filogenia , Análise de Sequência de DNA
4.
Ecol Appl ; 33(6): e2890, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37212374

RESUMO

Outbreaks of the spongy moth Lymantria dispar can have devastating impacts on forest resources and ecosystems. Lepidoptera-specific insecticides, such as Bacillus thuringiensis var. kurstaki (BTK) and tebufenozide, are often deployed to prevent heavy defoliation of the forest canopy. While it has been suggested that using BTK poses less risk to non-target Lepidoptera than leaving an outbreak untreated, in situ testing of this assumption has been impeded by methodological challenges. The trade-offs between insecticide use and outbreaks have yet to be addressed for tebufenozide, which is believed to have stronger side effects than BTK. We investigated the short-term trade-offs between tebufenozide treatments and no-action strategies for the non-target herbivore community in forest canopies. Over 3 years, Lepidoptera and Symphyta larvae were sampled by canopy fogging in 48 oak stands in southeast Germany during and after a spongy moth outbreak. Half of the sites were treated with tebufenozide and changes in canopy cover were monitored. We contrasted the impacts of tebufenozide and defoliator outbreaks on the abundance, diversity, and functional structure of chewing herbivore communities. Tebufenozide treatments strongly reduced Lepidoptera up to 6 weeks after spraying. Populations gradually converged back to control levels after 2 years. Shelter-building species dominated caterpillar assemblages in treated plots in the post-spray weeks, while flight-dimorphic species were slow to recover and remained underrepresented in treated stands 2 years post-treatment. Spongy moth outbreaks had minor effects on leaf chewer communities. Summer Lepidoptera decreased only when severe defoliation occurred, whereas Symphyta declined 1 year after defoliation. Polyphagous species with only partial host plant overlap with the spongy moth were absent from heavily defoliated sites, suggesting greater sensitivity of generalists to defoliation-induced plant responses. These results demonstrate that both tebufenozide treatments and spongy moth outbreaks alter canopy herbivore communities. Tebufenozide had a stronger and longer lasting impact, but it was restricted to Lepidoptera, whereas the outbreak affected both Lepidoptera and Symphyta. These results are tied to the fact that only half of the outbreak sites experienced severe defoliation. This highlights the limited accuracy of current defoliation forecast methods, which are used as the basis for the decision to spray insecticides.


Assuntos
Bacillus thuringiensis , Inseticidas , Mariposas , Animais , Ecossistema
5.
Sci Rep ; 12(1): 11332, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790799

RESUMO

The Ponto-Caspian region is an endemicity hotspot that harbours several crustacean radiations, among which amphipods are the most diverse. These poorly known species are severely threatened in their native range, while at the same time they are invading European inland waters with significant ecological consequences. A proper taxonomic knowledge of this fauna is paramount for its conservation within the native region and monitoring outside of it. Here, we assemble a DNA barcode reference library for nearly 60% of all known Ponto-Caspian amphipod species. We use several methods to define molecular operational taxonomic units (MOTUs), based on two mitochondrial markers (COI and 16S), and assess their congruence with current species-level taxonomy based on morphology. Depending on the method, we find that 54-69% of species had congruent morpho-molecular boundaries. The cases of incongruence resulted from lumping distinct morphospecies into a single MOTU (7-27%), splitting a morphospecies into several MOTUs (4-28%), or both (4-11%). MOTUs defined by distance-based methods without a priori divergence thresholds showed the highest congruence with morphological taxonomy. These results indicate that DNA barcoding is valuable for clarifying the diversity of Ponto-Caspian amphipods, but reveals that extensive work is needed to resolve taxonomic uncertainties. Our study advances the DNA barcode reference library for the European aquatic biota, paving the way towards improved taxonomic knowledge needed to enhance monitoring and conservation efforts.


Assuntos
Anfípodes , Borboletas , Anfípodes/genética , Animais , DNA , Código de Barras de DNA Taxonômico/métodos , Biblioteca Gênica
6.
Mol Ecol Resour ; 22(8): 2897-2914, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35700118

RESUMO

Because DNA metabarcoding typically employs sequence diversity among mitochondrial amplicons to estimate species composition, nuclear mitochondrial pseudogenes (NUMTs) can inflate diversity. This study quantifies the incidence and attributes of NUMTs derived from the 658-bp barcode region of cytochrome c oxidase I (COI) in 156 marine animal genomes. NUMTs were examined to ascertain if they could be recognized by their possession of indels or stop codons. In total, 309 NUMTs ≥150 bp were detected, with an average of 1.98 per species (range = 0-33) and a mean length of 391 ± 200 bp. Among this total, 75 (24.3%) lacked indels or stop codons. NUMTs appear to pose the greatest interpretational risk when short (<313 bp) amplicons are used, such as in environmental DNA studies, dietary analyses or processed fish identification. Employing the standard amplicon length (313 bp) for marine metabarcoding, NUMTs could potentially inflate the operational taxonomic unit (OTU) count by 21% above the true species count while also raising intraspecific variation at COI by 15%. However, when both amplicon length and position are considered, inflation in OTU counts and in barcode variation were just 9% and 10%, respectively, suggesting NUMTs will not seriously distort biodiversity assessments. There was a weak positive correlation between genome size and NUMT count but no variation among phyla or trophic groups. Until bioinformatic advances improve NUMT detection, the best defence involves targeting long amplicons and developing reference databases that include both mitochondrial sequences and their NUMT derivatives.


Assuntos
DNA Ambiental , Pseudogenes , Animais , Códon de Terminação , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Filogenia , Pseudogenes/genética
7.
Parasit Vectors ; 15(1): 199, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690834

RESUMO

BACKGROUND: Aquatic ecosystems provide breeding sites for blood-sucking insects such as Culicoides biting midges (Diptera: Ceratopogonidae), but factors affecting their distribution and host choice are poorly understood. A study was undertaken at two nature reserves in northern Spain to examine the abundance, species composition, population dynamics and feeding patterns of biting midges between 2018 and 2019. METHODS: Culicoides were captured by light suction traps baited with CO2 and by sweep netting vegetation. Blood meals and species identification of blood-fed specimens were determined using cytochrome c oxidase I subunit (COI) DNA barcoding. Multivariate generalized linear models were used to evaluate the associations between the abundance of Culicoides, the species richness and other parameters. RESULTS: The 4973 identified specimens comprised 28 species of Culicoides. These included two species reported for the first time in northern Spain, thus raising to 54 the number of Culicoides species described in the region. Specimens of all 28 species and 99.6% of the total specimens collected were caught in suction traps, while sweep netting vegetation revealed just 11 species and 0.4% of the total specimens. Midge abundance peaked in June/early July, with five species comprising > 80% of the captures: Culicoides alazanicus (24.9%), Culicoides griseidorsum (20.3%), Culicoides poperinghensis (16.2%), Culicoides kibunensis (10.7%) and Culicoides clastrieri (9.6%). DNA barcode analysis of blood meals from eight Culicoides species revealed that they fed on 17 vertebrate species (3 mammals and 14 birds). Species in the subgenus Avaritia were primarily ornithophilic, except for C. griseidorsum and C. poperinghensis. Host DNA from blood meals was successfully amplified from 75% of blood-fed females. A pictorial blood meal digestion scale is provided to accurately assess the blood-fed status of female Culicoides. CONCLUSIONS: The large number of different blood meal sources identified in the midges captured in this study signals the likely importance of wild birds and mammals (e.g. red deer and wild boar) as reservoir/amplifying hosts for pathogens. Available hosts are more exposed to being bitten by biting midge populations in aquatic ecosystems in late spring and early summer.


Assuntos
Ceratopogonidae , Cervos , Animais , Aves , Ceratopogonidae/genética , Ecossistema , Comportamento Alimentar , Feminino , Espanha
8.
PeerJ ; 10: e13267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35497186

RESUMO

Although Pakistan has rich biodiversity, many groups are poorly known, particularly insects. To address this gap, we employed DNA barcoding to survey its insect diversity. Specimens obtained through diverse collecting methods at 1,858 sites across Pakistan from 2010-2019 were examined for sequence variation in the 658 bp barcode region of the cytochrome c oxidase 1 (COI) gene. Sequences from nearly 49,000 specimens were assigned to 6,590 Barcode Index Numbers (BINs), a proxy for species, and most (88%) also possessed a representative image on the Barcode of Life Data System (BOLD). By coupling morphological inspections with barcode matches on BOLD, every BIN was assigned to an order (19) and most (99.8%) were placed to a family (362). However, just 40% of the BINs were assigned to a genus (1,375) and 21% to a species (1,364). Five orders (Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera) accounted for 92% of the specimens and BINs. More than half of the BINs (59%) are so far only known from Pakistan, but others have also been reported from Bangladesh (13%), India (12%), and China (8%). Representing the first DNA barcode survey of the insect fauna in any South Asian country, this study provides the foundation for a complete inventory of the insect fauna in Pakistan while also contributing to the global DNA barcode reference library.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Insetos , Animais , DNA , Código de Barras de DNA Taxonômico/métodos , Insetos/genética , Paquistão
9.
PLoS One ; 17(4): e0267390, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35482734

RESUMO

The Atlantic Forest harbors 7% of global biodiversity and possesses high levels of endemism, but many of its component taxa remain unstudied. Due to the importance of tropical forests and the urgency to protect them, there is a compelling need to address this knowledge gap. To provide more information on its arthropod fauna, a Malaise trap was deployed for 12 months in a semi-degraded area of the southern Upper Paraná ecoregion of the Atlantic Forest. All specimens were DNA barcoded and the Barcode Index Number (BIN) system was employed to assign each specimen to a species proxy. DNA barcodes were obtained from 75,500 arthropods that included representatives of 8,651 BINs. Nearly 81% of these BINs were first records, highlighting the high rates of endemism and lack of study of arthropods from the Atlantic Forest. Diptera was the most abundant order, followed by Hemiptera, Lepidoptera and Hymenoptera. Diptera was also the most species-rich order, followed by Hymenoptera, Lepidoptera, and Coleoptera, a result consistent with studies in other biogeographic regions. Insects were most abundant in winter and most diverse in autumn and winter. This pattern, however, was caused mainly by the dynamics of dipteran diversity as other orders differed in their seasonal variation. The BIN composition of the insect community varied sharply through the year and also differed between the two consecutive summers included in the sampling period. The study of the 38 commonest BINs showed that seasonal patterns of abundance were not order-specific. Temperature had the strongest impact on seasonal abundance variation. Our results highlight the striking and understudied arthropod diversity of the highly fragmented Atlantic Forest, the predominance of dipterans, and the fact that abundance and richness in this insect community peak in the coolest months. Standardized studies like this generate fast and reliable biodiversity inventories and unveil ecological patterns, thus providing valuable information for conservation programs.


Assuntos
Código de Barras de DNA Taxonômico , Dípteros , Animais , DNA , Dípteros/genética , Florestas , Insetos , Estações do Ano
10.
PeerJ ; 10: e12799, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35116199

RESUMO

Although biomass values are critical for diverse ecological and evolutionary analyses, they are unavailable for most insect species. Museum specimens have the potential to address this gap, but the variation introduced by sampling and preservation methods is uncertain. This study quantifies species-level variation in the body mass of Canadian Coleoptera based on the analysis of 3,744 specimens representing 3,161 Barcode Index Number (BIN) clusters. Employing the BIN system as a proxy for species allows the inclusion of groups where the taxonomic impediment prevents the assignment of specimens to a Linnaean species. By validating the reproducibility of measurements and evaluating the error introduced by operational complexities such as curatorial practice and the loss of body parts, this study demonstrates that museum specimens can speed the assembly of a mass registry. The results further indicate that congeneric species of Coleoptera generally have limited variation in mass, so a genus-level identification allows prediction of the body mass of species that have not been weighed or measured. Building on the present results, the construction of a mass registry for all insects is feasible.


Assuntos
Besouros , Animais , Besouros/genética , Canadá , Código de Barras de DNA Taxonômico/métodos , Reprodutibilidade dos Testes , Insetos , Sistema de Registros
11.
PeerJ ; 10: e12845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178296

RESUMO

DNA metabarcoding has the potential to greatly advance understanding of soil biodiversity, but this approach has seen limited application for the most abundant and species-rich group of soil fauna-the arthropods. This study begins to address this gap by comparing information on species composition recovered from metabarcoding two types of bulk samples (specimens, soil) from a temperate zone site and from bulk soil samples collected at eight sites in the Arctic. Analysis of 22 samples (3 specimen, 19 soil) revealed 410 arthropod OTUs belonging to 112 families, 25 orders, and nine classes. Studies at the temperate zone site revealed little overlap in species composition between soil and specimen samples, but more overlap at higher taxonomic levels (families, orders) and congruent patterns of α- and ß-diversity. Expansion of soil analyses to the Arctic revealed locally rich, highly dissimilar, and spatially structured assemblages compatible with dispersal limited and environmentally driven assembly. The current study demonstrates that DNA metabarcoding of bulk soil enables rapid, large-scale assessments of soil arthropod diversity. However, deep sequence coverage is required to adequately capture the species present in these samples, and expansion of the DNA barcode reference library is necessary to improve taxonomic resolution of the sequences recovered through this approach.


Assuntos
Artrópodes , Humanos , Animais , Artrópodes/genética , Código de Barras de DNA Taxonômico , Solo , DNA/genética , Biodiversidade
12.
Mol Ecol Resour ; 22(5): 1986-1998, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35178894

RESUMO

Eriophyoid mites (Acari: Eriophyoidea) are among the smallest of terrestrial arthropods and the most species-rich group of herbivorous mites with a high host specificity. However, knowledge of their species diversity has been impeded by the difficulty of their morphological differentiation. This study assembles a DNA barcode reference library that includes 1850 mitochondrial COI sequences which provides coverage for 45% of the 930 species of eriophyoid mites known from China, and for 37 North American species. Sequence analysis showed a clear barcode gap in nearly all species, reflecting the fact that intraspecific divergences averaged 0.97% versus a mean of 18.51% for interspecific divergences (minimum nearest-neighbour distances) in taxa belonging to three families. Based on these results, we used DNA barcoding to explore the species diversity of eriophyoid mites as well as their host interactions. The 1850 sequences were assigned to 531 barcode index numbers (BINs). Analyses examining the correspondence between these BINs and species identifications based on morphology revealed that members of 45 species were assigned to two or more BINs, resulting in 1.16 times more BINs than morphospecies. Richness projections suggest that over 2345 BINs occurred at the sampled locations. Host plant analysis showed that 89% of these mites (BINs) attack only one or two congeneric host species, but the others have several hosts. Furthermore, host-mite network analyses demonstrate that eriophyoid mites are high host-specific, and modularity is high in plant-mite networks. By creating a highly effective identification system for eriophyoid mites in the Barcode of Life Data Systems database (BOLD), DNA barcoding will advance our understanding of the diversity of eriophyoid mites and their host interactions.


Assuntos
Ácaros , Animais , DNA , Código de Barras de DNA Taxonômico , Especificidade de Hospedeiro/genética , Humanos , Ácaros/anatomia & histologia , Ácaros/genética , Plantas/genética
13.
Insects ; 13(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35055925

RESUMO

Determining the size of the German insect fauna requires better knowledge of several megadiverse families of Diptera and Hymenoptera that are taxonomically challenging. This study takes the first step in assessing these "dark taxa" families and provides species estimates for four challenging groups of Diptera (Cecidomyiidae, Chironomidae, Phoridae, and Sciaridae). These estimates are based on more than 48,000 DNA barcodes (COI) from Diptera collected by Malaise traps that were deployed in southern Germany. We assessed the fraction of German species belonging to 11 fly families with well-studied taxonomy in these samples. The resultant ratios were then used to estimate the species richness of the four "dark taxa" families (DT families hereafter). Our results suggest a surprisingly high proportion of undetected biodiversity in a supposedly well-investigated country: at least 1800-2200 species await discovery in Germany in these four families. As this estimate is based on collections from one region of Germany, the species count will likely increase with expanded geographic sampling.

14.
Zookeys ; 1099: 57-86, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761440

RESUMO

The Neotropical members formerly included in Earinus Wesmael, 1837 are transferred to a new genus, Chilearinus Sharkey gen. nov. Presently three Nearctic species of Earinus are recognized, i.e., Earinuserythropoda Cameron, 1887, Earinuslimitaris Say,1835, and Earinuszeirapherae Walley, 1935, and these are retained in Earinus. Earinuschubuquensis Berta, 2000 and Earinusscitus Enderlein, 1920 are transferred to Chilearinus, i.e., C.chubuquensis, and C.scitus, comb. nov. One other species is transferred to Chilearinus, i.e., Microgasterrubricollis Spinola, 1851, Chilearinusrubricollis, comb. nov. Two other Neotropical species, Earinushubrechtae Braet, 2002 and Earinusbourguignoni Braet, 2002 were described under the genus Earinus but are here transferred to Lytopylus, L.hubrechtae, and L.bourguignoni comb. nov. Two new species of Chilearinus are described, C.covidchronos and C.janbert spp. nov. The status of Agathislaevithorax Spinola,1851, Agathisrubricata Spinola,1851, and Agathisareolata Spinola, 1851 is discussed. A neotype is designated for Earinuslimitaris (Say, 1835) and diagnosed with a COI barcode. Earinusaustinbakeri and Earinuswalleyi spp. nov. are described. The status of both Earinus and Chilearinus in the Americas is discussed. A revised key to the genera of Agathidinae of the Americas is presented.

15.
Mol Ecol Resour ; 22(2): 803-822, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34562055

RESUMO

To associate specimens identified by molecular characters to other biological knowledge, we need reference sequences annotated by Linnaean taxonomy. In this study, we (1) report the creation of a comprehensive reference library of DNA barcodes for the arthropods of an entire country (Finland), (2) publish this library, and (3) deliver a new identification tool for insects and spiders, as based on this resource. The reference library contains mtDNA COI barcodes for 11,275 (43%) of 26,437 arthropod species known from Finland, including 10,811 (45%) of 23,956 insect species. To quantify the improvement in identification accuracy enabled by the current reference library, we ran 1000 Finnish insect and spider species through the Barcode of Life Data system (BOLD) identification engine. Of these, 91% were correctly assigned to a unique species when compared to the new reference library alone, 85% were correctly identified when compared to BOLD with the new material included, and 75% with the new material excluded. To capitalize on this resource, we used the new reference material to train a probabilistic taxonomic assignment tool, FinPROTAX, scoring high success. For the full-length barcode region, the accuracy of taxonomic assignments at the level of classes, orders, families, subfamilies, tribes, genera, and species reached 99.9%, 99.9%, 99.8%, 99.7%, 99.4%, 96.8%, and 88.5%, respectively. The FinBOL arthropod reference library and FinPROTAX are available through the Finnish Biodiversity Information Facility (www.laji.fi) at https://laji.fi/en/theme/protax. Overall, the FinBOL investment represents a massive capacity-transfer from the taxonomic community of Finland to all sectors of society.


Assuntos
Artrópodes , Animais , Artrópodes/classificação , Biodiversidade , Código de Barras de DNA Taxonômico , Finlândia , Biblioteca Gênica
16.
Sci Rep ; 11(1): 15922, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354125

RESUMO

Although mites (Acari) are abundant in many terrestrial and freshwater ecosystems, their diversity is poorly understood. Since most mite species can be distinguished by variation in the DNA barcode region of cytochrome c oxidase I, the Barcode Index Number (BIN) system provides a reliable species proxy that facilitates large-scale surveys. Such analysis reveals many new BINs that can only be identified as Acari until they are examined by a taxonomic specialist. This study demonstrates that the Barcode of Life Datasystem's identification engine (BOLD ID) generally delivers correct ordinal and family assignments from both full-length DNA barcodes and their truncated versions gathered in metabarcoding studies. This result was demonstrated by examining BOLD ID's capacity to assign 7021 mite BINs to their correct order (4) and family (189). Identification success improved with sequence length and taxon coverage but varied among orders indicating the need for lineage-specific thresholds. A strict sequence similarity threshold (86.6%) prevented all ordinal misassignments and allowed the identification of 78.6% of the 7021 BINs. However, higher thresholds were required to eliminate family misassignments for Sarcoptiformes (89.9%), and Trombidiformes (91.4%), consequently reducing the proportion of BINs identified to 68.6%. Lineages with low barcode coverage in the reference library should be prioritized for barcode library expansion to improve assignment success.


Assuntos
Ácaros e Carrapatos/genética , Código de Barras de DNA Taxonômico/métodos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Animais , Biodiversidade , DNA/genética , Ecossistema , Biblioteca Gênica , Técnicas Genéticas , Ácaros/genética
17.
Mol Ecol Resour ; 21(7): 2333-2349, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34097821

RESUMO

Previous studies of butterfly diversification in the Neotropics have focused on Amazonia and the tropical Andes, while southern regions of the continent have received little attention. To address the gap in knowledge about the Lepidoptera of temperate South America, we analysed over 3000 specimens representing nearly 500 species from Argentina for a segment of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Representing 42% of the country's butterfly fauna, collections targeted species from the Atlantic and Andean forests, and biodiversity hotspots that were previously connected but are now isolated. We assessed COI effectiveness for species discrimination and identification and how its performance was affected by geographic distances and taxon coverage. COI data also allowed to study patterns of genetic variation across Argentina, particularly between populations in the Atlantic and Andean forests. Our results show that COI discriminates species well, but that identification success is reduced on average by ~20% as spatial and taxonomic coverage rises. We also found that levels of genetic variation are associated with species' spatial distribution type, a pattern which might reflect differences in their dispersal and colonization abilities. In particular, intraspecific distance between populations in the Atlantic and Andean forests was significantly higher in species with disjunct distributions than in those with a continuous range. All splits between lineages in these forests dated to the Pleistocene, but divergence dates varied considerably, suggesting that historical connections between the Atlantic and Andean forests have differentially affected their shared butterfly fauna. Our study supports the fact that large-scale assessments of mitochondrial DNA variation are a powerful tool for evolutionary studies.


Assuntos
Borboletas , Animais , Brasil , Borboletas/genética , Florestas , Variação Genética , Filogenia , Filogeografia
18.
PeerJ ; 9: e11157, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33976967

RESUMO

Although the butterflies of North America have received considerable taxonomic attention, overlooked species and instances of hybridization continue to be revealed. The present study assembles a DNA barcode reference library for this fauna to identify groups whose patterns of sequence variation suggest the need for further taxonomic study. Based on 14,626 records from 814 species, DNA barcodes were obtained for 96% of the fauna. The maximum intraspecific distance averaged 1/4 the minimum distance to the nearest neighbor, producing a barcode gap in 76% of the species. Most species (80%) were monophyletic, the others were para- or polyphyletic. Although 15% of currently recognized species shared barcodes, the incidence of such taxa was far higher in regions exposed to Pleistocene glaciations than in those that were ice-free. Nearly 10% of species displayed high intraspecific variation (>2.5%), suggesting the need for further investigation to assess potential cryptic diversity. Aside from aiding the identification of all life stages of North American butterflies, the reference library has provided new perspectives on the incidence of both cryptic and potentially over-split species, setting the stage for future studies that can further explore the evolutionary dynamics of this group.

19.
Mol Ecol Resour ; 21(7): 2190-2203, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33905615

RESUMO

The effective use of metabarcoding in biodiversity science has brought important analytical challenges due to the need to generate accurate taxonomic assignments. The assignment of sequences to genus or species level is critical for biodiversity surveys and biomonitoring, but it is particularly challenging as researchers must select the approach that best recovers information on species composition. This study evaluates the performance and accuracy of seven methods in recovering the species composition of mock communities by using COI barcode fragments. The mock communities varied in species number and specimen abundance, while upstream molecular and bioinformatic variables were held constant, and using a set of COI fragments. We evaluated the impact of parameter optimization on the quality of the predictions. Our results indicate that BLAST top hit competes well with more complex approaches if optimized for the mock community under study. For example, the two machine learning methods that were benchmarked proved more sensitive to reference database heterogeneity and completeness than methods based on sequence similarity. The accuracy of assignments was impacted by both species and specimen counts (query compositional heterogeneity) which ultimately influence the selection of appropriate software. We urge researchers to: (i) use realistic mock communities to allow optimization of parameters, regardless of the taxonomic assignment method employed; (ii) carefully choose and curate the reference databases including completeness; and (iii) use QIIME, BLAST or LCA methods, in conjunction with parameter tuning to better assign taxonomy to diverse communities, especially when information on species diversity is lacking for the area under study.


Assuntos
Código de Barras de DNA Taxonômico , Eucariotos , Biodiversidade , Biologia Computacional , Software
20.
Mol Ecol Resour ; 21(8): 2832-2846, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33749132

RESUMO

DNA barcoding and metabarcoding are now widely used to advance species discovery and biodiversity assessments. High-throughput sequencing (HTS) has expanded the volume and scope of these analyses, but elevated error rates introduce noise into sequence records that can inflate estimates of biodiversity. Denoising -the separation of biological signal from instrument (technical) noise-of barcode and metabarcode data currently employs abundance-based methods which do not capitalize on the highly conserved structure of the cytochrome c oxidase subunit I (COI) region employed as the animal barcode. This manuscript introduces debar, an R package that utilizes a profile hidden Markov model to denoise indel errors in COI sequences introduced by instrument error. In silico studies demonstrated that debar recognized 95% of artificially introduced indels in COI sequences. When applied to real-world data, debar reduced indel errors in circular consensus sequences obtained with the Sequel platform by 75%, and those generated on the Ion Torrent S5 by 94%. The false correction rate was less than 0.1%, indicating that debar is receptive to the majority of true COI variation in the animal kingdom. In conclusion, the debar package improves DNA barcode and metabarcode workflows by aiding the generation of more accurate sequences aiding the characterization of species diversity.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Animais , DNA , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...